35 Pandas实现groupby聚合后不同列数据统计

内容分享2周前发布
0 0 0

35 Pandas实现groupby聚合后不同列数据统计

电影评分数据集(UserID,MovieID,Rating,Timestamp)

聚合后单列-单指标统计:每个MovieID的平均评分
df.groupby(“MovieID”)[“Rating”].mean()

聚合后单列-多指标统计:每个MoiveID的最高评分、最低评分、平均评分
df.groupby(“MovieID”)[“Rating”].agg(mean=“mean”, max=“max”, min=np.min)
df.groupby(“MovieID”).agg({“Rating”:[‘mean’, ‘max’, np.min]})

聚合后多列-多指标统计:每个MoiveID的评分人数,最高评分、最低评分、平均评分
df.groupby(“MovieID”).agg(
rating_mean=(“Rating”, “mean”),
user_count=(“UserID”, lambda x : x.nunique())
df.groupby(“MovieID”).agg(
{“Rating”: [‘mean’, ‘min’, ‘max’],
“UserID”: lambda x :x.nunique()})
df.groupby(“MovieID”).apply(
lambda x: pd.Series(
{“min”: x[“Rating”].min(), “mean”: x[“Rating”].mean()}))

记忆:agg(新列名=函数)、agg(新列名=(原列名,函数))、agg({“原列名”:函数/列表})
agg函数的两种形式,等号代表“把结果赋值给新列”,字典/元组代表“对这个列运用这些函数”

官网文档:https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.core.groupby.DataFrameGroupBy.agg.html

读取数据

import pandas as pd import numpy as np df = pd.read_csv( "./datas/movielens-1m/ratings.dat", sep="::", engine= python , names="UserID::MovieID::Rating::Timestamp".split("::") ) df.head(3)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}

.dataframe thead th {
text-align: right;
}
</code></pre>

UserID MovieID Rating Timestamp
0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968

聚合后单列-单指标统计

# 每个MovieID的平均评分 result = df.groupby("MovieID")["Rating"].mean() result.head() MovieID 1 4.146846 2 3.201141 3 3.016736 4 2.729412 5 3.006757 Name: Rating, dtype: float64 type(result) pandas.core.series.Series

聚合后单列-多指标统计

每个MoiveID的最高评分、最低评分、平均评分

方法1:agg函数传入多个结果列名=函数名形式

result = df.groupby("MovieID")["Rating"].agg( mean="mean", max="max", min=np.min ) result.head()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}

.dataframe thead th {
text-align: right;
}
</code></pre>

mean max min
MovieID
1 4.146846 5 1
2 3.201141 5 1
3 3.016736 5 1
4 2.729412 5 1
5 3.006757 5 1

方法2:agg函数传入字典,key是column名,value是函数列表

# 每个MoiveID的最高评分、最低评分、平均评分 result = df.groupby("MovieID").agg( {"Rating":[ mean , max , np.min]} ) result.head()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}

.dataframe thead tr th {
text-align: left;
}

.dataframe thead tr:last-of-type th {
text-align: right;
}
</code></pre>

Rating
mean max amin
MovieID
1 4.146846 5 1
2 3.201141 5 1
3 3.016736 5 1
4 2.729412 5 1
5 3.006757 5 1

result.columns = [ age_mean , age_min , age_max ] result.head()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}

.dataframe thead th {
text-align: right;
}
</code></pre>

age_mean age_min age_max
MovieID
1 4.146846 5 1
2 3.201141 5 1
3 3.016736 5 1
4 2.729412 5 1
5 3.006757 5 1

聚合后多列-多指标统计

每个MoiveID的评分人数,最高评分、最低评分、平均评分

方法1:agg函数传入字典,key是原列名,value是原列名和函数元组

# 回忆:agg函数的两种形式,等号代表“把结果赋值给新列”,字典/元组代表“对这个列运用这些函数” result = df.groupby("MovieID").agg( rating_mean=("Rating", "mean"), rating_min=("Rating", "min"), rating_max=("Rating", "max"), user_count=("UserID", lambda x : x.nunique()) ) result.head()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}

.dataframe thead th {
text-align: right;
}
</code></pre>

rating_mean rating_min rating_max user_count
MovieID
1 4.146846 1 5 2077
2 3.201141 1 5 701
3 3.016736 1 5 478
4 2.729412 1 5 170
5 3.006757 1 5 296

方法2:agg函数传入字典,key是原列名,value是函数列表

统计后是二级索引,需要做索引处理

result = df.groupby("MovieID").agg( { "Rating": [ mean , min , max ], "UserID": lambda x :x.nunique() } ) result.head()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}

.dataframe thead tr th {
text-align: left;
}

.dataframe thead tr:last-of-type th {
text-align: right;
}
</code></pre>

Rating UserID
mean min max <lambda>
MovieID
1 4.146846 1 5 2077
2 3.201141 1 5 701
3 3.016736 1 5 478
4 2.729412 1 5 170
5 3.006757 1 5 296

result["Rating"].head(3)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}

.dataframe thead th {
text-align: right;
}
</code></pre>

mean min max
MovieID
1 4.146846 1 5
2 3.201141 1 5
3 3.016736 1 5

result.columns = ["rating_mean", "rating_min","rating_max","user_count"] result.head()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}

.dataframe thead th {
text-align: right;
}
</code></pre>

rating_mean rating_min rating_max user_count
MovieID
1 4.146846 1 5 2077
2 3.201141 1 5 701
3 3.016736 1 5 478
4 2.729412 1 5 170
5 3.006757 1 5 296

方法3:使用groupby之后apply对每个子df单独统计

def agg_func(x): """注意,这个x是子DF""" # 这个Series会变成一行,字典KEY是列名 return pd.Series({ "rating_mean": x["Rating"].mean(), "rating_min": x["Rating"].min(), "rating_max": x["Rating"].max(), "user_count": x["UserID"].nunique() }) result = df.groupby("MovieID").apply(agg_func) result.head()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}

.dataframe thead th {
text-align: right;
}
</code></pre>

rating_mean rating_min rating_max user_count
MovieID
1 4.146846 1.0 5.0 2077.0
2 3.201141 1.0 5.0 701.0
3 3.016736 1.0 5.0 478.0
4 2.729412 1.0 5.0 170.0
5 3.006757 1.0 5.0 296.0

本文使用 文章同步助手 同步

© 版权声明

相关文章

暂无评论

您必须登录才能参与评论!
立即登录
none
暂无评论...