下载全文链接:
http://www.tcsae.org/cn/article/doi/10.11975/j.issn.1002-6819.202308138
《农业工程学报》2023年第39卷第23期刊载了上海海洋大学等单位贾雪莹、赵春江、周娟、王庆艳、梁晓婷、何鑫、黄文倩与张驰的论文——“基于改善YOLOv7模型的柑橘表面缺陷在线检测”。该研究由国家自然科学基金项目(项目号:31871523)等资助。
引文信息:贾雪莹,赵春江,周娟,等. 基于改善YOLOv7模型的柑橘表面缺陷在线检测[J]. 农业工程学报,2023,39(23):142-151.
doi:
10.11975/j.issn.1002-6819.202308138

▲ 不同柑橘表面缺陷的试验样本

研究目的与方法:
柑橘表面缺陷是水果检测分级的重大依据,针对传统柑橘表面缺陷检测方法效率低、精度低等问题,该研究提出一种柑橘表面缺陷的实时检测方法。
该方法第一对柑橘图像进行图像增强,然后利用提出的YOLOv7-CACT模型对柑橘表面缺陷进行检测,该模型在YOLOv7模型骨干网络中引入坐标注意力模块(coordinate attention, CA),从而提高模型对缺陷部分的关注度。在网络头部引入CT(contextual transformer,CT)模块,融合静态和动态上下文表征特征,从而增强缺陷部分特征表达能力。通过试验确定CA模块和CT模块的最佳位置。
结果与结论:
改善后的YOLOv7-CACT模型检测结果平均精度均值(mean average precision,mAP)相较于原始模型增加了4.1个百分点,达到91.1%,满足了实际生产中对柑橘缺陷检测精度的要求。最后将基于YOLOv7-CACT的柑橘检测模型通过TensorRT进行部署,试验结果表明模型的推理时间满足柑橘生产线10个/s的实时分选要求,总体的检测精度达到94.4%,为柑橘表面缺陷在线检测提供了一种精准的实时检测方法。






