[ICLR’24] MGIE

2小时前更新 2 0 0

[ICLR'24] MGIE

所在地:
美国
语言:
zh
收录时间:
2025-09-10
[ICLR’24] MGIE[ICLR’24] MGIE

AI绘画模型

Instruction-based image editing improves the controllability and flexibility of image manipulation via natural commands without elaborate descriptions or regional masks. However, human instructions are sometimes too brief for current methods to capture and follow. Multimodal large language models (MLLMs) show promising capabilities in cross-modal understanding and visual-aware response generation via LMs. We investigate how MLLMs facilitate edit instructions and present MLLM-Guided Image Editing (MGIE). MGIE learns to derive expressive instructions and provides explicit guidance. The editing model jointly captures this visual imagination and performs manipulation through end-to-end training. We evaluate various aspects of Photoshop-style modification, global photo optimization, and local editing. Extensive experimental results demonstrate that expressive instructions are crucial to instruction-based image editing, and our MGIE can lead to a notable improvement in automatic metrics and human evaluation while maintaining competitive inference efficiency.

👇 press the tab for different datasets

[ICLR'24] MGIE

数据统计

数据评估

[ICLR’24] MGIE浏览人数已经达到2,以上数据仅供参考,建议大家以官方数据为准! 更多[ICLR’24] MGIE数据如:访问速度、搜索引擎收录以及索引量、用户体验、品牌价值观等;请联系[ICLR’24] MGIE的官方提供。本站数据仅供参考!

关于[ICLR’24] MGIE特别声明

本站鸟瑞导航提供的[ICLR’24] MGIE数据都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由鸟瑞导航实际控制,在2025年9月10日 下午7:04收录时,该网页上的内容,都属于合法合规,后期网页的内容如出现违规,请联系本站网站管理员进行举报,我们将进行删除,鸟瑞导航不承担任何责任。

相关导航

暂无网站点评

您必须登录才能参与评论!
立即登录
none
暂无评论...