Video Diffusion Models

2个月前更新 6 0 0

Video Diffusion Models

所在地:
美国
语言:
zh
收录时间:
2025-09-10
Video Diffusion ModelsVideo Diffusion Models

AI绘画模型

One of our main innovations is a new conditional generation method for unconditional diffusion models. Our new conditioning method, which refer to as the gradient method, modifies the sampling procedure of the model to improve a conditioning loss on denoised data using gradient-based optimization. We find that the gradient method is more capable than existing methods in ensuring consistency of the generated samples with the conditioning information.

We use the gradient method to autoregressively extend our models to more timesteps and higher resolutions.

Frames from our gradient method (left) and a baseline "replacement" method (right) for autoregressive extension. Videos sampled using the gradient method attain superior temporal coherence compared to the baseline method.

We show that high quality videos can be generated by essentially the standard formulation of the Gaussian diffusion model, with little modification other than straightforward architectural changes to accommodate video data within memory constraints of deep learning accelerators. We train models that generate a block of a fixed number of frames of a video, and to generate videos longer than that number of frames, we additionally show how to repurpose a trained model to act as a model which is block-autoregressive over frames. We test our methods on an unconditional video generation benchmark, where we achieve state-of-the-art sample quality scores, and we also show promising results on text-conditioned video generation.

Video Diffusion Models

数据统计

数据评估

Video Diffusion Models浏览人数已经达到6,以上数据仅供参考,建议大家以官方数据为准! 更多Video Diffusion Models数据如:访问速度、搜索引擎收录以及索引量、用户体验、品牌价值观等;请联系Video Diffusion Models的官方提供。本站数据仅供参考!

关于Video Diffusion Models特别声明

本站鸟瑞导航提供的Video Diffusion Models数据都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由鸟瑞导航实际控制,在2025年9月10日 下午6:59收录时,该网页上的内容,都属于合法合规,后期网页的内容如出现违规,请联系本站网站管理员进行举报,我们将进行删除,鸟瑞导航不承担任何责任。

相关导航

深氧AI

深氧AI

深氧未来(深圳)科技有限公司(o3.xyz)是一家专注于AI图形/视觉的公司,致力于使用AIGC技术一站式生产3D、视频等内容,赋能游戏、XR、短视频等领域。我们通过整合AI、多模态大模型、云原生、计算机图形、计算机视觉等技术红利打造下一代3D视频内容生产工具,极大的降低3D视频制作门槛。我们的使命是实现“人人可制作3D视频”的创意未来。愿景是“打造下一代3D视频生产工具”。

暂无网站点评

您必须登录才能参与评论!
立即登录
none
暂无评论...